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Logistic regression 

Self-test answers 
 

 

• We learnt how to do hierarchical regression in the previous chapter. Try 
to conduct a hierarchical logistic regression analysis on these data. Enter 
Previous and PSWQ in the first block and Anxious in the second. 
 

First of all, as always, load in the data (once you have set your working directory to be the 
place where you have saved the penalty.dat file of course ): 

penaltyData<-read.delim("penalty.dat", header = TRUE) 

We can see the first six cases of data by executing: 

head(penaltyData) 
PSWQ Anxious Previous         Scored 
1   18      21       56 Scored Penalty 
2   17      32       35 Scored Penalty 
3   16      34       35 Scored Penalty 
4   14      40       15 Scored Penalty 
5    5      24       47 Scored Penalty 
6    1      15       67 Scored Penalty 
 

Looking at the data above, we can see that the categorical variable Scored has two 
categories, Missed penalty and Scored penalty and R has encoded it as a factor. If you think 
back to the eel example in the chapter, you will remember that R encodes factors in 
alphabetical order, and this doesn’t always make the most sense for our data analysis. 
However, in this particular example it is not a problem because Missed will be category 1 and 
Scored category 2. In other words, Missed will be the baseline category, which is what we 
want. As such, we don’t need to set the baseline category like I did in the book chapter for 
this example, hooray!  

The next thing that we need to do is to create the two hierarchical models. We can do this by 
using the glm() function as we did in the chapter. We are carrying out a hierarchical 
regression: in model 1 we want to include both Previous and PSWQ  because these are 
previously established predictors and so it is a good idea to enter them into the model in a 
single block, and then in model 2 we want to add Anxious. To create the first model we can 
execute: 

penaltyModel.1 <- glm(Scored ~ Previous + PSWQ, data = penaltyData, family = 
binomial()) 

This command creates a model called penaltyModel.1 in which Scored is predicted from 
Previous and PSWQ. Similarly, we can create the second model by executing: 

penaltyModel.2 <- glm(Scored ~ Previous + PSWQ + Anxious, data = penaltyData, family = 
binomial()) 

This command creates a model called penaltyModel.2 in which Scored is predicted from 
Previous, PSWQ and Anxious. We could also have created penaltyModel.2 by executing 
the shorter command: 

penaltyModel.2 <- update(penaltyModel.1, .~. + Anxious) 

 
To see the models that we have just generated we need to execute the summary() function 

(remembering to put the model name into the function): 

summary(penaltyModel.1) 

summary(penaltyModel.2) 
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> summary(penaltyModel.1) 
 
Call: 
glm(formula = Scored ~ Previous + PSWQ, family = binomial(),  
    data = penaltyData) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.2212  -0.3306   0.1038   0.5046   1.6067   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  1.28031    1.67017   0.767  0.44333    
Previous     0.06480    0.02209   2.934  0.00335 ** 
PSWQ        -0.23009    0.07983  -2.882  0.00395 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 103.638  on 74  degrees of freedom 
Residual deviance:  48.662  on 72  degrees of freedom 
AIC: 54.662 
 
Number of Fisher Scoring iterations: 6 
 
The output above shows the model summary for the model 1 (penaltyModel.1). We will begin 
by looking at the summary statistics about the model. The overall fit of the model is assessed 
using the deviance statistic. Remember that larger values of the deviance statistic indicate 
poorly fitting statistical models. R provides two deviance statistics: the null deviance, and the 
residual deviance. The null deviance is the deviance of the model that contains no predictors, 
other than the constant. The residual deviance is the deviance for the model. 

At this stage of the analysis the value of the deviance for the model should be less than the 
value for the null model (when only the constant was included in the model) because lower 
values of −2LL indicate that the model is predicting the outcome variable more accurately. For 
the null model , −2LL = 103.64, but when Previous and PSWQ have been included this value 
has been reduced to 48.66. This reduction tells us that the model is better at predicting 
whether someone will score a penalty than it was before Previous and PSWQ were added. 

The question of how much better the model predicts the outcome variable can be assessed 
using the model chi-square statistic, which measures the difference between the model as it 
currently stands and the model when only the constant was included. We can use R to 
automatically calculate the model chi-square and its significance for us by executing: 

 

modelChi <- penaltyModel.1$null.deviance - penaltyModel.1$deviance 

chidf <- penaltyModel.1$df.null - penaltyModel.1$df.residual 

chisq.prob <- 1 - pchisq(modelChi, chidf) 

 
We can then view the output of these commands by executing: 
 

modelChi; chidf; chisq.prob 

 
[1] 54.97669 
[1] 2 
[1] 1.1533e-12 
 
The change in the amount of information explained by the model (54.98) is significant (p < 
.0001), and so using previous experience and worry as predictors significantly improves our 
ability to predict penalty success, χ2(2) = 54.98, p < .0001. 

Next, we consider the coefficients.  This part is crucial because it tells us the estimates for 
the coefficients for the predictors included in the model. This section of the output gives us 
the coefficients and statistics for the variables that have been included in the model at this 
point (namely  Previous, PSWQ and the constant). The crucial statistic is the z-statistic, 
which has a normal distribution and tells us whether the b coefficient for that predictor is 
significantly different from zero. If the coefficient is significantly different from zero then we 
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can assume that the predictor is making a significant contribution to the prediction of the 
outcome. For these data it seems to indicate that previous experience, b = 0.06, z = 2.93, p < 
.01, and worry, b = − 0.23, z = − 2.88, p < .01, are both significant predictors of penalty 
success (note that the significance of the z-statistics are both less than .05).   

Next, we want to calculate the various values of R2 , which we can do by executing 
(remember that you need to have executed the function code from the book chapter first): 

logisticPseudoR2s(penaltyModel.1) 

 
Pseudo R^2 for logistic regression 
Hosmer and Lemeshow R^2   0.53  
Cox and Snell R^2         0.52  
Nagelkerke R^2            0.694 

 
As you can see, all of the values of R2 differ slightly, but they can be used as effect size 
measures for the model. We can interpret the result of Hosmer and Lemeshow’s goodness-
of-fit test as meaning that the model can account for 53% of the variance in penalty success 
(so, roughly half of what makes a penalty kick successful is still unknown). 

We can next calculate the odds ratio as the exponential of the b coefficient for the predictor 
variables. These coefficients are stored in a variable called coefficients, which is part of the 
model we created. Therefore, we can access this variable as: 

penaltyModel.1$coefficients 

 

This just means ‘the variable called coefficients within the model called eelModel.1’. It’s a 
simple matter to apply the exp() function to this variable to find out the odds ratio: 

exp(penaltyModel.1$coefficients) 

Executing this command will display the odds ratio for the predictors in the model: 
 

(Intercept)    Previous        PSWQ  
  3.5977600   1.0669482   0.7944584  
 
The value of the odds ratio for previous indicates that if the percentage of previous penalties 
scored goes up by one, then the odds of scoring a penalty also increase (because the odds 
ratio is greater than 1). The odds ratio for PSWQ indicates that if the level of worry increases 
by one point along the Penn State worry scale, then the odds of scoring a penalty decrease 
(because it is less than 1). 

We can also calculate confidence intervals for the odds ratios.  To obtain confidence 
intervals of the parameters, we use the confint() function – just as we did for ordinary 
regression. We can also exponentiate these with the exp() function. To get the confidence 
intervals execute: 

exp(confint(penaltyModel.1)) 
 
2.5 %      97.5 % 
(Intercept) 0.1379603 108.7408589 
Previous    1.0263545   1.1216277 
PSWQ        0.6614590   0.9115488 

 
The confidence interval for Previous ranges from 1.02 to 1.12, so we can be very confident 
that the value of the odds ratio in the population lies somewhere between these two values. 
What’s more, because both values are greater than 1 we can also be confident that the 
relationship between Previous and penalty success found in this sample is true of the whole 
population of footballers. The confidence interval for PSWQ ranges from .66 to .91, so we can 
be very confident that the value of the odds ratio in the population lies somewhere between 
these two values. In addition, because both values are less than 1, we can be confident that 
the relationship between PSWQ and penalty success found in this sample is true of the whole 
population of footballers. If we had found that the confidence interval ranged from less than 1 
to more than 1, then this would limit the generalizability of our findings because the odds ratio 
in the population could indicate either a positive (odds ratio > 1) or negative (odds ratio < 1) 
relationship. 
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The output for model 2 (below) shows what happens to the model when our new predictor 

(Anxious) is added. The effect of adding Anxious to the model is to reduce the –2LL to 
47.416 (a reduction of 1.246 from model 1, suggesting that including Anxious in the model 
has not improved our ability to predict whether a penalty will be scored or missed. In addition, 
we can see that the AIC is higher in model 2 (55.416) than model 1 (54.66), indicating that 
model 1 is the better model. 

 
Call: 
glm(formula = Scored ~ Previous + PSWQ + Anxious, family = binomial(),  
    data = penaltyData) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.31374  -0.35996   0.08334   0.53860   1.61380   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -11.49256   11.80175  -0.974  0.33016    
Previous      0.20261    0.12932   1.567  0.11719    
PSWQ         -0.25137    0.08401  -2.992  0.00277 ** 
Anxious       0.27585    0.25259   1.092  0.27480    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 103.638  on 74  degrees of freedom 
Residual deviance:  47.416  on 71  degrees of freedom 
AIC: 55.416 

 
We can again compare the models by finding the difference in the deviance statistics. This 

difference is chi-square distributed.  We can find this difference in two ways. First, we can 
subtract one deviance from the other as we did before. An easier method, though, is to use 
the anova() function.  The anova() function has the advantage that it also calculates the 
degrees of freedom for us. If we do the calculations manually we can use the same 
commands as before, except that rather than using the null.deviance and df.null variables, we 
use the deviance and df.residual variables for the two models we’re comparing – in each case 
we subtract model 2 from model 1: 

 

modelChi <- penaltyModel.1$deviance - penaltyModel.2$deviance 

chidf <- penaltyModel.1$df.residual - penaltyModel.2$df.residual 

chisq.prob <- 1 - pchisq(modelChi, chidf) 

modelChi; chidf; chisq.prob 

 
[1] 1.246267 
[1] 1 
[1] 0.2642667 
 

You should find that the difference between the models (modelChi) is 1. 246267, with one 
degree of freedom (chidf), and a  p-value (chisq.prob) of .2642667. As this value is greater 
than .05, we can conclude that model 2 (with Anxious added as a predictor) is not a 
significant improvement over model 1 (which included only Previous and PSWQ as 
predictors). 

We can do the same with the anova() function. Remember that with this function we simply 
list the models in the order in which we want to compare them. Therefore, to compare our two 
models we would execute: 
 

anova(penaltyModel.1, penaltyModel.2) 
 
Analysis of Deviance Table 
 
Model 1: Scored ~ Previous + PSWQ 
Model 2: Scored ~ Previous + PSWQ + Anxious 
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  Resid. Df   Resid. Dev  Df  Deviance 
1        72     48.662             
2        71     47.416    1    1.2463 
 

The coefficients part of the output now contains all three predictors and something very 
interesting has happened: PSWQ is still a significant predictor of penalty success; however, 
Previous experience no longer significantly predicts penalty success. In addition, state 
anxiety appears not to make a significant contribution to the prediction of penalty success. 
How can it be that previous experience no longer predicts penalty success, and neither does 
anxiety, yet the ability of the model to predict penalty success has improved slightly? 

Let’s again compute R2 for model 2 (remember to execute the function code first if you 
haven’t done so already): 

logisticPseudoR2s(penaltyModel.2) 

 
Pseudo R^2 for logistic regression 
Hosmer and Lemeshow R^2   0.542  
Cox and Snell R^2         0.527  
Nagelkerke R^2            0.704 

 
We can next calculate the odds ratio by executing: 

exp(penaltyModel.2$coefficients) 

Executing this command will display the odds ratio for the predictors in the model: 
 

(Intercept)     Previous         PSWQ      Anxious  
1.020573e-05 1.224593e+00 7.777351e-01 1.317649e+00  
 
We can also calculate confidence intervals for the odds ratios, as we did for model 1:  

 

exp(confint(penaltyModel.2)) 
 
                   2.5 %       97.5 % 
(Intercept) 1.876236e-16 6.425863e+04 
Previous    9.607908e-01 1.612961e+00 
PSWQ        6.420582e-01 8.988251e-01 
Anxious     8.138225e-01 2.242252e+00 
 

If we examine the values of the odds ratio for both Previous and Anxious it is clear that 
they both potentially have a positive relationship to penalty success (i.e. as they increase by a 
unit, the odds of scoring improve). However, the confidence intervals for these values cross 1, 
which indicates that the direction of this relationship may be unstable in the population as a 
whole (i.e. the value of the odds ratio in our sample may be quite different to the value if we 
had data from the entire population).        

You may be tempted to use this final model to say that, although worry is a significant 
predictor of penalty success, the previous finding that experience plays a role is incorrect. 
This would be a dangerous conclusion to make, and if you read the section on 
multicollinearity in the book you’ll see why. 

 

 

• Using what you learned in Chapter 6, carry out a Pearson correlation 
between all of the variables in this analysis. Can you work out why we 
have a problem with collinearity? 

 
You can execute this command: 

cor(penaltyData[, c("Previous", "PSWQ", "Anxious")]) 

This applies the cor() function to the predictor variables in the penaltyData dataframe. The 
results of your analysis should look like this: 
 
           Previous       PSWQ    Anxious 
Previous  1.0000000 -0.6435448 -0.9928699 
PSWQ     -0.6435448  1.0000000  0.6516416 
Anxious  -0.9928699  0.6516416  1.0000000 
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From this output we can see that Anxious and Previous are highly negatively correlated (r 

= −.99); in fact they are nearly perfectly correlated. Both Previous and Anxious correlate 
with penalty success but because they are correlated so highly with each other, it is unclear 
which of the two variables predicts penalty success in the regression. As such our 
multicollinearity stems from the near-perfect correlation between Anxious and Previous. 

 

 

• Try creating two new variables that are the natural log of Anxious and 
Previous. (Remember that 0 has no log, so if any of the variables have a 
zero, you’ll need to add a constant – see section 5.8.3.2.) 

penaltyData$logAnxInt<-log(penaltyData$Anxious)*penaltyData$Anxious 

This command creates a new variable called logAnxInt in the penaltyData dataframe that is 
the variable Anxious (penaltyData$Anxious) multiplied by the log of that variable 
(log(penaltyData$Anxious)). 

penaltyData$logPrevInt<-log(penaltyData$Previous + 1)*penaltyData$Previous 

This command creates a new variable called logPrevInt in the penaltyData dataframe that is 
the variable Previous (penaltyData$Previous) multiplied by the log of that variable plus 1 
(log(penaltyData$Previous + 1)). We included the ‘+1’ because this variable contained 0 
values (and there is no log of zero). 
 

 

• What does the log-likelihood measure? 

The log-likelihood statistic is analogous to the residual sum of squares in multiple regression 
in the sense that it is an indicator of how much unexplained information there is after the 
model has been fitted. It follows, therefore, that large values of the log-likelihood statistic 
indicate poorly fitting statistical models, because the larger the value of the log-likelihood, the 
more unexplained observations there are. 

 

• Use what you learnt earlier in this chapter to check the assumptions of 
multicollinearity and linearity of the logit. 

Testing for linearity of the logit 
In this example we have three continuous variables (Funny, Sex, Good_Mate), therefore we 
have to check that each one is linearly related to the log of the outcome variable (Success). 
To test this assumption we need to run the logistic regression but include predictors that are 
the interaction between each predictor on the log of itself. For each variable, create a new 
variable that is the log of the original variable. We need to create the interaction terms of each 
of the variables with its log, by creating using the log() function. We create these variables by 
executing: 

 
mlChat$logFunny<-log(mlChat$Funny +1) 
mlChat$logGood<-log(mlChat$Good_Mate +1) 
mlChat$logSex<-log(mlChat$Sex + 1) 
 
These commands create three new variables in the mlChat dataframe that reflect the log of 
each predictor. 

To test the assumption we need to redo the analysis exactly the same as before, except that 
we should put all variables in a single block (i.e., we don’t need to do it hierarchically), and we 
also need to put in three new interaction terms, consisting of each predictor and their logs. 
We create the model by executing: 

 
chatTest.1 <- mlogit(Success ~ 1 | Good_Mate + Funny + Sex + Funny:logFunny + 
Good_Mate:logGood + Sex:logSex, data = mlChat, reflevel=3) 
summary(chatTest.1) 
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This command creates a model (chatTest.1) in which the variable Success is predicted from 
Good_Mate, Funny, Sex, the interaction between Good_Mate and its log 
(Good_Mate:logGood), the interaction between Funny and its log (Funny:logFunny) and the 
interaction between Sex and its log (Sex:logSex). We then use the summary() function to 
display the model. 
 
Coefficients : 
                                          Estimate Std. Error t-value  Pr(>|t|)     
altGet Phone Number                      -0.107256   1.104480 -0.0971 0.9226394     
altGo Home with Person                    2.311981   1.409535  1.6402 0.1009544     
altGet Phone Number:Good_Mate            -0.204173   0.406084 -0.5028 0.6151149     
altGo Home with Person:Good_Mate         -0.881675   0.522739 -1.6866 0.0916719 .   
altGet Phone Number:Funny                -0.585111   0.487429 -1.2004 0.2299831     
altGo Home with Person:Funny             -1.785351   0.607114 -2.9407 0.0032745 **  
altGet Phone Number:Sex                   0.103035   0.419337  0.2457 0.8059067     
altGo Home with Person:Sex               -1.485951   0.491596 -3.0227 0.0025053 **  
altGet Phone Number:Funny:logFunny        0.300997   0.201528  1.4936 0.1352873     
altGo Home with Person:Funny:logFunny     0.850784   0.244860  3.4746 0.0005117 *** 
altGet Phone Number:Good_Mate:logGood     0.133730   0.156107  0.8567 0.3916369     
altGo Home with Person:Good_Mate:logGood  0.395804   0.201207  1.9671 0.0491663 *   
altGet Phone Number:Sex:logSex           -0.026916   0.161473 -0.1667 0.8676130     
altGo Home with Person:Sex:logSex         0.623765   0.189443  3.2926 0.0009926 *** 
 

The output above is all that we need to look at because it tells us about whether any of our 
predictors significantly predict the outcome categories. The assumption of linearity of the logit 
is tested by the six interaction terms, the majority of which are significant (p < .05), which 
means that all three predictors have violated the assumption.  
 
Testing for multicollinearity 

 
First, if you haven’t already, read the data into a new dataframe, which we’ll call chatData, by 
setting your working directory to the location of the file and executing: 

chatData<-read.delim("Chat-Up Lines.dat", header = TRUE) 

Set Female to be the baseline category of Gender: 
chatData$Gender<-relevel(chatData$Gender, ref = 2) 

Now we need to create a model using the chatData in its original format, with all four 
predictors: 
 
chatModel <- glm(Success ~ Funny + Good_Mate + Sex + Gender, data = chatData, family = 
binomial()) 
 
Having created this model, we can get the VIF and tolerance as we did in Chapter 7 by 
entering the model name into the vif() function from the car package. Execute: 

vif(chatModel) 

1/vif(chatModel) 

The first line gives you the VIF values and the second the tolerance (which is simply the 
reciprocal of the VIF). 
 
Funny     Good_Mate  Sex       Gender  
1.304700  1.027076   1.017565  1.262266  
 
Funny     Good_Mate  Sex       Gender  
0.7664597 0.9736373  0.9827379 0.7922259  

 
The results are shown in the output above (first VIF and then tolerance). Menard (1995) 
suggests that a tolerance value less than 0.1 almost certainly indicates a serious collinearity 
problem. Myers (1990) also suggests that a VIF value greater than 10 is cause for concern 
and in these data all of the VIFs are well below 10 (and tolerances above 0.1). It seems from 
these values that there is not an issue of collinearity between the predictor variables.  

We can investigate this issue further by examining the correlations between the numeric 
variables by executing: 

 
cor(chatData[,c("Funny", "Good_Mate", "Sex")]) 
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           Funny    Good_Mate   Sex 
Funny     1.0000000 0.16320983 0.11560845 
Good_Mate 0.1632098 1.00000000 0.03794612 
Sex       0.1156084 0.03794612 1.00000000 

 
Looking at the correlations above, we can be confident in concluding that there is no problem 
with multicollinearity in these data as none of the variables correlate very highly, all rs < .2. 
 

Oliver Twisted 

Please Sir, can I have some more … diagnostics? 

      leverage studentized.residuals dfbeta.(Intercept) dfbeta.InterventionIntervention 
1   0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
2   0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
3   0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
4   0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
5   0.01754386             0.8160435      -3.039582e-17                    3.225994e-02 
6   0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
7   0.01754386            -1.6083171      -5.526513e-17                   -6.334765e-02 
8   0.01754386             0.8160435      -2.486931e-17                    3.225994e-02 
9   0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
10  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
11  0.01754386             0.8160435      -2.486931e-17                    3.225994e-02 
12  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
13  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
14  0.01754386            -1.6083171      -4.973862e-17                   -6.334765e-02 
15  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
16  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
17  0.01754386             0.8160435      -2.210605e-17                    3.225994e-02 
18  0.01754386            -1.6083171      -4.973862e-17                   -6.334765e-02 
19  0.01754386             0.8160435      -2.210605e-17                    3.225994e-02 
20  0.01754386             0.8160435      -2.210605e-17                    3.225994e-02 
21  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
22  0.01754386             0.8160435      -2.210605e-17                    3.225994e-02 
23  0.01754386             0.8160435      -2.210605e-17                    3.225994e-02 
24  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
25  0.01754386             0.8160435      -2.210605e-17                    3.225994e-02 
26  0.01754386             0.8160435      -2.210605e-17                    3.225994e-02 
27  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
28  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
29  0.01754386             0.8160435      -2.210605e-17                    3.225994e-02 
30  0.01754386             0.8160435      -2.210605e-17                    3.225994e-02 
31  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
32  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
33  0.01754386             0.8160435      -1.934280e-17                    3.225994e-02 
34  0.01754386            -1.6083171      -3.868559e-17                   -6.334765e-02 
35  0.01754386             0.8160435      -1.934280e-17                    3.225994e-02 
36  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
37  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
38  0.01754386            -1.6083171      -3.315908e-17                   -6.334765e-02 
39  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
40  0.01754386             0.8160435      -1.934280e-17                    3.225994e-02 
41  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
42  0.01754386            -1.6083171      -3.315908e-17                   -6.334765e-02 
43  0.01754386             0.8160435      -1.934280e-17                    3.225994e-02 
44  0.01754386            -1.6083171      -3.315908e-17                   -6.334765e-02 
45  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
46  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
47  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
48  0.01754386            -1.6083171      -3.315908e-17                   -6.334765e-02 
49  0.01754386            -1.6083171      -3.315908e-17                   -6.334765e-02 
50  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
51  0.01754386             0.8160435      -1.657954e-17                    3.225994e-02 
52  0.01754386             0.8160435      -1.657954e-17                    3.225994e-02 
53  0.01754386             0.8160435      -1.657954e-17                    3.225994e-02 
54  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
55  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
56  0.01754386             0.8160435      -1.657954e-17                    3.225994e-02 
57  0.01754386             0.8160435      -1.657954e-17                    3.225994e-02 
58  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
59  0.01754386             0.8160435      -1.657954e-17                    3.225994e-02 
60  0.01754386             0.8160435      -1.657954e-17                    3.225994e-02 
61  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
62  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
63  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
64  0.01754386            -1.6083171      -2.210605e-17                   -6.334765e-02 
65  0.01754386             0.8160435      -1.381628e-17                    3.225994e-02 
66  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
67  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
68  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
69  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
70  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
71  0.01754386             0.8160435      -1.381628e-17                    3.225994e-02 
72  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
73  0.01754386            -1.6083171      -1.105303e-17                   -6.334765e-02 
74  0.01754386             0.8160435      -1.381628e-17                    3.225994e-02 
75  0.01754386             0.8160435      -1.381628e-17                    3.225994e-02 
76  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
77  0.01754386             0.8160435      -1.381628e-17                    3.225994e-02 
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78  0.01754386            -1.6083171      -1.105303e-17                   -6.334765e-02 
79  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
80  0.01754386            -1.6083171      -1.105303e-17                   -6.334765e-02 
81  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
82  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
83  0.01754386             0.8160435      -1.105303e-17                    3.225994e-02 
84  0.01754386             0.8160435      -1.105303e-17                    3.225994e-02 
85  0.01754386            -1.6083171      -1.105303e-17                   -6.334765e-02 
86  0.01754386             0.8160435      -1.381628e-17                    3.225994e-02 
87  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
88  0.01754386            -1.6083171      -5.526513e-18                   -6.334765e-02 
89  0.01754386             0.8160435      -1.105303e-17                    3.225994e-02 
90  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
91  0.01754386             0.8160435      -1.105303e-17                    3.225994e-02 
92  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
93  0.01754386             0.8160435      -1.105303e-17                    3.225994e-02 
94  0.01754386             0.8160435      -1.105303e-17                    3.225994e-02 
95  0.01754386            -1.6083171       0.000000e+00                   -6.334765e-02 
96  0.01754386             0.8160435      -1.105303e-17                    3.225994e-02 
97  0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
98  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
99  0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
100 0.01754386             0.8160435      -1.105303e-17                    3.225994e-02 
101 0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
102 0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
103 0.01754386             0.8160435      -8.289770e-18                    3.225994e-02 
104 0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
105 0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
106 0.01785714             1.3110447       4.782751e-02                   -4.782751e-02 
107 0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
108 0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
109 0.01754386             0.8160435      -2.763257e-18                    3.225994e-02 
110 0.01754386             0.8160435      -2.763257e-18                    3.225994e-02 
111 0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
112 0.01785714            -1.0643627      -3.886912e-02                    3.886912e-02 
113 0.01754386             0.8160435      -2.763257e-18                    3.225994e-02 
 
 

Labcoat Leni’s real research 

Mandatory suicide? 

Problem 
Lacourse, E. et al. (2001). Journal of Youth and Adolescence, 30, 
321–332. 
 
Although I have fairly ecclectic tastes in music, my favourite kind of music is 

heavy metal. One thing that is mildly irritating about liking heavy is that 
everyone assumes that you’re a miserable or aggressive bastard. When 
not listening (and often while listening to) heavy metal, I spend most of my 
time researching clinical psychology: I research how anxiety develops in 
children. Therefore, I was literally beside myself with excitement when a 

few years back I stumbled on a paper that combined these two interests. 
Lacourse, Claes, and Villeneuve (2001) carried out a study to see whether a love of heavy 
metal could predict suicide risk. Fabulous stuff! 

Eric Lacourse and his colleagues used questionnaires to measure several background 
variables: suicide risk (yes or no), marital status of parents (together or divorced/separated), 
the extent to which the person’s mother and father were neglectful, self-
estrangement/powerlessness (adolescents who have negative self-perceptions, are bored 
with life, etc.), social isolation (feelings of a lack of support), normlessness (beliefs that 
socially disapproved behaviours can be used to achieve certain goals), meaninglessness 
(doubting that school is relevant to gaining employment), and drug use. In addition, they 
measured liking of different categories of music. For heavy metal they included classic bands 
(Black Sabbath, Iron Maiden), thrash metal bands (Slayer, Metallica), death/black metal 
bands (Obituary, Burzum) and gothic (Marilyn Manson, Sisters of Mercy). As well as liking, 
they measured behavioural manifestations of worshipping these bands (hanging posters, 
hanging out with other metal fans), and vicarious music listening (whether music was used 
when angry or to bring out aggressive moods). They carried out a logistic regression 
predicting suicide risk from all of these predictors for males and females separately. 

The data for the female sample are in the file Lacourse et al. (2001) Females.dat. Labcoat 
Leni wants you to carry out a logistic regression predicting Suicide_Risk from all of the other 
predictors (forced entry). (To make it easier to compare to the published results I suggest you 
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enter the predictors in the same order as in Table 3 in the paper: Age, Marital_Status, 
Mother_Negligence, Father_Negligence, Self_Estrangement, Isolation, Normlessness, 
Meaninglessness, Drug_Use, Metal, Worshipping, Vicarious.) Create a table of the 
results; does listening to heavy metal make girls suicidal? If not, what does? 

Solution 
Let’s start by loading in the data, I’m going to call it suicideData as it is quicker to type than 
LacourseetalFemales.dat: 

 
suicideData<-read.delim("Lacourse et al. (2001) Females.dat", header = TRUE) 
 

We have two categorical variables of interest in the suicideData dataframe, Marital_Status 
and Suicide_Risk (we also have Gender, but as all the participants in this dataframe are 
female we can ignore it). Helpfully, R recognizes that these variables are categorical and has 
loaded them in as factors. 

The trouble is that the numbers that R has assigned might not be the numbers that we want. 
In fact, R creates levels of the factor by taking the text strings in alphabetical order and 
assigning them ascending numerical values. In other words, for Suicide_Risk we have two 
categories and R will have ordered these categories alphabetically (i.e., ‘Non-Suicidal’ and 
‘Suicidal). So, Non-Suicidal will be the baseline category because it is first, which is good 
because this makes sense for our analysis. However, for Marital_Status the categories were 
Together and Separated or Divorced so given the alphabetic order Separated or Divorced will 
be the baseline category. Yet, it makes more sense to code this variable the opposite way 
around. It would be good if Together was the baseline, or first category, because then we 
would know that the model coefficients reflect the probability of being separated or divorced 
(which is what we want to know) rather than the probability of not being divorced.  

Fortunately, the function relevel() lets us specify the baseline category for a factor. Execute 
this command: 

suicideData$Marital_Staus<-relevel(suicideData$Marital_Status, "Together") 

The variable Marital_Status now has Together as the first level (i.e. the baseline category). 
Having set our baseline categories we can get on with the analysis. 

The main analysis is fairly simple to specify because we’re just putting all predictors in at the 
same time and so we only need to specify one model (note that I have ordered the predictors 
as suggested by Labcoat Leni): 

 
suicideModel <- glm(Suicide_Risk ~ Age + Marital_Status + Mother_Negligence + 
Father_Negligence + Self_Estrangement + Isolation + Normlessness + Meaninglessness + 
Drug_Use + Metal + Worshipping + Vicarious, data = suicideData, family = binomial()) 
 
summary(suicideModel) 
 
 
 
Call: 
glm(formula = Suicide_Risk ~ Age + Marital_Status + Mother_Negligence +  
    Father_Negligence + Self_Estrangement + Isolation + Normlessness +  
    Meaninglessness + Drug_Use + Metal + Worshipping + Vicarious,  
    family = binomial(), data = suicideData) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.78306  -0.56512  -0.29958  -0.07088   2.53406   
 
Coefficients: 
                                      Estimate Std. Error z value Pr(>|z|)    
(Intercept)                         -19.011598   6.208677  -3.062  0.00220 ** 
Age                                   0.692853   0.323445   2.142  0.03219 *  
Marital_StatusSeparated or Divorced   0.183489   0.677262   0.271  0.78645    
Mother_Negligence                    -0.019607   0.053244  -0.368  0.71268    
Father_Negligence                     0.084632   0.047858   1.768  0.07699 .  
Self_Estrangement                     0.155153   0.064832   2.393  0.01670 *  
Isolation                            -0.005822   0.076152  -0.076  0.93906    
Normlessness                          0.191307   0.108841   1.758  0.07880 .  
Meaninglessness                      -0.066610   0.061024  -1.092  0.27503    
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Drug_Use                              0.316855   0.103097   3.073  0.00212 ** 
Metal                                 0.135552   0.091719   1.478  0.13943    
Worshipping                           0.158911   0.129474   1.227  0.21968    
Vicarious                            -0.341831   0.196288  -1.741  0.08160 .  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 135.533  on 120  degrees of freedom 
Residual deviance:  85.116  on 108  degrees of freedom 
AIC: 111.12 
 
Number of Fisher Scoring iterations: 6 
 

The model chi-square statistic measures the difference between the model as it currently 
stands and the model when only the constant was included. We can use R to automatically 
calculate the model chi-square, and its significance to see whether the model is a better fit by 
executing: 

 
modelChi <- suicideModel$null.deviance - suicideModel$deviance 
chidf <- suicideModel$df.null - suicideModel$df.residual 
chisq.prob <- 1 - pchisq(modelChi, chidf) 
 

We can then view the output of the above commands by executing: 
 
modelChi; chidf; chisq.prob 
 

[1] 50.41736 
[1] 12 
[1] 1.179907e-06 
 
We can report that including all the predictors produced a significant improvement in the fit of 
the model, χ2(12) = 50.42, p < .0001. 

We can calculate the odds ratios as the exponential of the b coefficient for the predictor 
variables using the exp() function and by executing:   

 exp(suicideModel$coefficients) 

Executing this command will display the odds ratio for the predictors in the model: 
             
(Intercept)               Age                    Marital_Status(Separated or Divorced) 
5.538188e-09              1.999411e+00           1.201402e+00  
Mother_Negligence         Father_Negligence      Self_Estrangement  
9.805836e-01              1.088317e+00           1.167837e+00  
Isolation                 Normlessness           Meaninglessness  
9.941947e-01              1.210831e+00           9.355597e-01  
Drug_Use                  Metal                  Worshipping  
1.372803e+00              1.145169e+00           1.172234e+00  
Vicarious  
7.104685e-01  
 
   

We can also calculate confidence intervals for the odds ratios.  To obtain confidence 
intervals of the parameters, we use the confint() function – just as we did for ordinary 
regression.  We can also exponentiate these with the exp() function. To get the confidence 
intervals execute: 

exp(confint(suicideModel)) 

This function computes the confidence intervals for the coefficients in the model 
(confint(suicideModel)) and then uses exp() to exponentiate them.  
  
                                          2.5 %       97.5 % 
(Intercept)                         9.065656e-15 0.0004577666 
Age                                 1.090546e+00 3.9372709912 
Marital_StatusSeparated or Divorced 3.058015e-01 4.4898699168 
Mother_Negligence                   8.764185e-01 1.0837478703 
Father_Negligence                   9.932302e-01 1.2015111314 
Self_Estrangement                   1.035373e+00 1.3401633046 
Isolation                           8.532270e-01 1.1548163908 
Normlessness                        9.854717e-01 1.5210438866 
Meaninglessness                     8.242768e-01 1.0500790337 



DISCOVERING STATISTICS USING R 

PROFESSOR ANDY P FIELD  12 

Why did you buy me this 
crappy statistics textbook 
for Christmas, Auntie Kate? 

Drug_Use                            1.132532e+00 1.7047218535 
Metal                               9.596213e-01 1.3819317960 
Worshipping                         9.084589e-01 1.5205816278 
Vicarious                           4.714224e-01 1.0272917992 
 

We can present these results in the following table: 
    95% CI for Odds Ratio 
  B SE Lower Odds 

Ratio Upper 

 Constant 6.21 6.21    
 Age 0.69* 0.32 1.09 2.00 3.94 
 Marital status 0.18 0.68 0.31 1.20 4.49 
 Mother negligence −0.02 0.05 0.88 0.98 1.08 
 Father negligence 0.08* 0.05 0.99 1.09 1.20 
 Self-estrangement/ 

powerlessness 0.16* 0.06 1.04 1.17 1.34 

 Social isolation −0.01 0.08 0.85 0.99 1.15 
 Normlessness 0.19* 0.11 0.99 1.21 1.52 
 Meaninglessness −0.07 0.06 0.82 0.94 1.05 
 Drug use 0.32** 0.10 1.13 1.37 1.70 
 Metal 0.14 0.09 0.96 1.15 1.38 
 Worshipping 0.16* 0.13 0.91 1.17 1.52 
 Vicarious listening −0.34 0.20 0.47 0.71 1.03 
*p < .05, ** p < .01; one-tailed 
 
I’ve reported one-tailed significances (because Lacourse et al. do and it makes it easier to 
compare our results to Table 3 in their paper). We can conclude that listening to heavy metal 
did not significantly predict suicide risk in women (of course not; anyone I’ve ever met who 
likes metal does not conform to the stereotype). However, in case you’re interested, listening 
to country music apparently does (Stack & Gundlach, 1992). The factors that did predict 
suicide risk were age (risk increased with age), father negligence (although this was 
significant only one-tailed, it showed that as negligence increased so did suicide risk), self-
estrangement (basically low self-esteem predicted suicide risk, as you might expect), 
normlessness (again, only one-tailed), drug use (the more drugs used, the more likely a 
person was to be in the at-risk category), and worshipping (the more the person showed 
signs of worshipping bands, the more likely they were to be in the at-risk group). 

The most significant predictor was drug use. So, this shows you that for girls, listening to 
metal was not a risk factor for suicide, but drug use was. To find out what happens for boys, 
you’ll just have to read the article! This is scientific proof that metal isn’t bad for your health, 
so download some Deathspell Omega and enjoy!  
 

 

Smart Alex’s solutions 

Task 1 

A psychologist was interested in whether children’s understanding of display rules can be 
predicted from their age, and whether the child possesses a theory of mind. A 
display rule is a convention of displaying an appropriate emotion in a given 
situation. For example, if you receive a Christmas present that you don’t 
like, the appropriate emotional display is to smile politely and say 
‘Thank you Auntie Kate, I’ve always wanted a rotting cabbage’. The 
inappropriate emotional display is to start crying and scream ‘Why did 
you buy me a rotting cabbage, you selfish old bag?’ Using appropriate 
display rules has been linked to having a theory of mind (the ability to understand 
what another person might be thinking). To test this theory, children were given a false 
belief task (a task used to measure whether someone has a theory of mind), a display rule 
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task (which they could either pass or fail) and their age in months was measured. The data 
are in Display.dat. Run a logistic regression to see whether possession of display rule 
understanding (did the child pass the test? yes/no) can be predicted from possession of a 
theory of mind (did the child pass the false belief task? yes/no), age in months and their 
interaction.  

 
The main analysis  

 
First of all we need to load the data: 
displayData<-read.delim("Display.dat", header = TRUE) 
 
We can have a look at the first six cases by executing: 
head(displayData) 
 

  age fb   display 
1  24 No      No 
2  26 No      No 
3  30 No      No 
4  31 No      No 
5  36 No      No 
6  29 No     Yes 
 

To carry out logistic regression, the data must be entered as for normal regression: they are 
arranged in three columns (one representing each variable). Looking at the displayData 
dataframe above, you should notice that both of the categorical variables have been loaded 
as factors and R will have specified numbers to represent the categories. For ease of 
interpretation, the outcome variable should be coded 1 (event occurred) and 0 (event did not 
occur); in this case, 1 represents having display rule understanding (Yes), and 0 represents 
an absence of display rule understanding (No). For the false belief task a similar coding has 
been used (0 = failed the false belief task (No), 1 = passed the false belief task (Yes)). 
Because R codes factors alphabetically, it will have coded No = 0 and Yes = 1 for both 
variables, which is what we want. Therefore, we do not need to relevel either of the factors for 
this example – woohoo! 

OK, now we can get on with the analysis. I am going to do a hierarchical logistic regression. 
In the first model I am going to include the categorical predictor fb only, and then in the 
second model I will add the other predictor (age) and also the interaction between fb and age 
(fb × age, or fb:age in R). We can create these two models by executing: 

 
displayModel.1 <- glm(display ~ fb, data = displayData, family = binomial()) 
displayModel.2 <- update(displayModel.1, .~. + age + fb:age) 
 
To see the models that we have just generated we need to execute the summary() function 
(remembering to put the model name into the function): 

 
summary(displayModel.1) 
summary(displayModel.2) 

 
Call: 
glm(formula = display ~ fb, family = binomial(), data = displayData) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.8078  -0.6809   0.6589   0.6589   1.7751   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3437     0.4584  -2.931  0.00338 **  
fbYes         2.7608     0.6045   4.567 4.95e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 96.124  on 69  degrees of freedom 
Residual deviance: 70.042  on 68  degrees of freedom 
AIC: 74.042 
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Number of Fisher Scoring iterations: 4 
 
Interpreting the output of devianceModel.1 
The null deviance in the above output tells us about the model when only the constant is 
included (i.e. all predictor variables are omitted). This represents the fit of the model when the 
most basic model is fitted to the data. The residual deviance tells us about the model when 
the predictor fb has been added to the model. At this stage of the analysis the value of 
residual deviance should be less than the value when only the constant was included (null 
deviance) in the model (because lower values of −2LL indicate that the model is predicting 
the outcome variable more accurately). When only the constant was included, −2LL = 96.124, 
but now fb has been included this value has been reduced to 70.042. This reduction tells us 
that the model is better at predicting display rule understanding than it was before fb was 
added. 

The question of how much better the model predicts the outcome variable than the baseline 
model can be assessed using the model chi-square statistic, which measures the difference 
between the model as it currently stands and the model when only the constant was included. 
We can use R to automatically calculate the model chi-square and its significance by 
executing: 

 
modelChi <- displayModel.1$null.deviance - displayModel.1$deviance 
chidf <- displayModel.1$df.null - displayModel.1$df.residual 
chisq.prob <- 1 - pchisq(modelChi, chidf) 

 
We can then view the output of these commands by executing: 
 
modelChi; chidf; chisq.prob 
 
[1] 26.08266 
[1] 1 
[1] 3.271081e-07 
 
The change in the amount of information explained by the model (26.08) is significant (p < 
.0001), so using false belief understanding as a predictor significantly improves our ability to 
predict display rule understanding, χ2(1) = 26.08, p < .0001. 

The next part of the output is crucial because it tells us the estimates for the coefficients for 
the predictors included in the model. This section of the output gives us the coefficients and 
statistics for the variables that have been included in the model at this point (namely, fb and 
the constant). The crucial statistic is the z-statistic, which has a normal distribution and tells 
us whether the b coefficient for that predictor is significantly different from zero. If the 
coefficient is significantly different from zero then we can assume that the predictor is making 
a significant contribution to the prediction of the outcome. For these data it seems to indicate 
that false belief understanding, b = 2.76, z = 4.57, p < .001, is a significant predictor of display 
rule understanding (note that the significance of the z-statistic is less than .05).   

Next, we want to calculate the various values of R2 , and we can do this by executing 
(remember that you need to have executed the function code from the book chapter first for 
this to work): 

  
logisticPseudoR2s(displayModel.1) 

 
Pseudo R^2 for logistic regression 
Hosmer and Lemeshow R^2   0.271  
Cox and Snell R^2         0.311  
Nagelkerke R^2            0.417 
 
As you can see, all of the values of R2 differ slightly, but they can be used as effect size 
measures for the model.  

The final thing we need to look at is the odds ratio which was described in the book chapter.  
To calculate the change in odds that result from a unit change in the predictor for this 
example, we must first calculate the odds of a child having display rule understanding given 
that they don’t have second-order false belief task understanding. We then calculate the odds 
of a child having display rule understanding given that they do have false belief 
understanding. Finally, we calculate the proportionate change in these two odds.  
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To calculate the first set of odds, we need to calculate the probability of a child having a 
display rule understanding given they failed the false belief task. The parameter coding at the 
beginning of the output told us that children who failed the false belief task were coded with a 
0, so we can use this value in place of X. The value of b1 has been estimated for us as 2.7607 
and the coefficient for the constant can be taken from the same table and is −1.3437. We can 
calculate the odds as: 

 
Now, we calculate the same thing after the predictor variable has changed by one unit. In this 
case, because the predictor variable is dichotomous, we need to calculate the odds of a child 
passing the display rule task, given that they have passed the false belief task. So, the value 
of the false belief variable, X, is now 1 (rather than 0). The resulting calculations are: 

 
We now know the odds before and after a unit change in the predictor variable. It is now a 

simple matter to calculate the proportionate change in odds by dividing the odds after a unit 
change in the predictor by the odds before that change. 

 
If the value is greater than 1 then it indicates that as the predictor increases, the odds of the 
outcome occurring increase. Conversely, a value less than 1 indicates that as the predictor 
increases, the odds of the outcome occurring decrease. In this example, we can say that the 
odds of a child who has false belief understanding also having display rule understanding are 
15 times higher than those of a child who does not have false belief understanding. 
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We can also get R to calculate the odds ratio as the exponential of the b coefficient for the 
predictor variables using the exp() function and by executing: 
 
exp(displayModel.1$coefficients) 
 
Executing this command will display the odds ratio for the predictors in the model: 

 
(Intercept)       fbYes  
  0.2608696  15.8125000  
 
You should notice that the value of the proportionate change in odds that we calculated by 
hand above is the same as the value that R reports for exp(b) here (allowing for differences 
due to rounding). 

We can also get R to calculate a confidence interval for the odds ratio.  To obtain confidence 
intervals of the parameters, we use the confint() function – just as we did for ordinary 
regression. We can also exponentiate these with the exp() function. To get the confidence 
interval execute: 
 
exp(confint(displayModel.1)) 
 
               2.5 %     97.5 % 
(Intercept) 0.0963625  0.6012293 
fbYes       5.1415334 56.1604505 
 
The way to interpret this confidence interval is to say that if we ran 100 experiments and 

calculated confidence intervals for the value of exp(b), then these intervals would encompass 
the actual value of exp(b) in the population (rather than the sample) on 95 occasions. So, in 
this case, we can be fairly confident that the population value of exp(b) lies between 5.14 and 
56.16. However, there is a 5% chance that a sample could give a confidence interval that 
‘misses’ the true value. What’s more, because both values are greater than 1 we can also be 
confident that the relationship between fb and display rule understanding found in this sample 
is true of the whole population of children. If we had found that the confidence interval ranged 
from less than 1 to more than 1, then this would limit the generalizability of our findings 
because the odds ratio in the population could indicate either a positive (odds ratio > 1) or 
negative (odds ratio < 1) relationship. 

The output for model 2 (below) shows what happens to the model when our new predictor 
(age) and the interaction (fb × age) are added. The effect of adding these to the model is to 
reduce the –2LL to 67.63 (a reduction of 2.412 from model 1), suggesting that including them 
in the model has not improved our ability to predict whether a child will have display rule 
understanding or not. In addition, we can see that the AIC is slightly higher in model 2 (75.63) 
than model 1 (74.04), indicating that model 1 is the better model. 

 
Call: 
glm(formula = display ~ fb + age + fb:age, family = binomial(),  
    data = displayData) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.0339  -0.6236   0.4875   0.6909   1.9968   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)   
(Intercept) -2.94817    1.59648  -1.847   0.0648 . 
fbYes        2.85775    2.10523   1.357   0.1746   
age          0.04404    0.04060   1.085   0.2781   
fbYes:age   -0.01669    0.04757  -0.351   0.7256   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 96.124  on 69  degrees of freedom 
Residual deviance: 67.634  on 66  degrees of freedom 
AIC: 75.634 
 
Number of Fisher Scoring iterations: 4 
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We can again compare the models by finding the difference in the deviance statistics. This 
difference is chi-square distributed.  We can find this difference in two ways. First, we can 
subtract one deviance from the other as we did before. An easier method, though, is to use 
the anova() function.  The anova() function has the advantage that it also calculates the 
degrees of freedom for us. If we do the calculations manually we can use the same 
commands as before, except that rather than using the null.deviance and df.null variables, we 
use the deviance and df.residual variables for the two models we’re comparing – in each case 
we subtract model 2 from model 1: 

 
modelChi <- displayModel.1$deviance - displayModel.2$deviance 
chidf <- displayModel.1$df.residual - displayModel.2$df.residual 
chisq.prob <- 1 - pchisq(modelChi, chidf) 

modelChi; chidf; chisq.prob 

 
[1] 2.407671 
[1] 2 
[1] 0.3000412 
 

You should find that the difference between the models (modelChi) is 2.407671, with 2 
degrees of freedom (chidf), and a  p-value (chisq.prob) of .3000412. As this value is greater 
than .05, we can conclude that model 2 (with age and fb × age added as predictors) is not a 
significant improvement over model 1 (which included only fb as a predictor). 

We can do the same with the anova() function. Remember that with this function we simply 
list the models in the order in which we want to compare them. Therefore, to compare our two 
models we would execute: 
 
anova(displayModel.1, displayModel.2) 
 
Analysis of Deviance Table 
 
Model 1: display ~ fb 
Model 2: display ~ fb + age + fb:age 
  Resid. Df Resid. Dev Df Deviance 
1        68     70.042             
2        66     67.634  2   2.4077 
 
The coefficients part of the output now contains all three predictors, and something very 
interesting has happened: understanding of false beliefs (fb) no longer significantly predicts 
display rules. In addition, age appears not to make a significant contribution to the prediction 
of display rules, and neither does the interaction between age and false beliefs. How can it be 
that false beliefs no longer predict display rule understanding, and neither does age or the 
interaction, yet the ability of the model to predict display rule understanding has improved 
slightly? 

Let’s again compute R2 for model 2 (remember to execute the function code first if you 
haven’t done so already): 

logisticPseudoR2s(displayModel.2) 
 
Pseudo R^2 for logistic regression 
Hosmer and Lemeshow R^2   0.296  
Cox and Snell R^2         0.334  
Nagelkerke R^2            0.448 
 
We can next calculate the odds ratio by executing: 

exp(displayModel.2$coefficients) 

Executing this command will display the odds ratio for the predictors in the model: 
 

(Intercept)  fbYes         age       fbYes:age  
 0.05243577 17.42231132  1.04502296  0.98344567 
 
We can also calculate confidence intervals for the odds ratios, as we did for model 1:  

 

exp(confint(displayModel.2)) 
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         2.5 %      97.5 % 
(Intercept) 0.001759117    1.142108 
fbYes       0.293461449 1292.673012 
age         0.961033191    1.136442 
fbYes:age   0.893710835    1.083236 
 

If we examine the values of the odds ratio for both fb and age it is clear that they both 
potentially have a positive relationship to display rule understanding (i.e. as they increase by 
a unit, the odds of understanding improve). However, the confidence intervals for these 
values cross 1, which indicates that the direction of this relationship may be unstable in the 
population as a whole (i.e. the value of the odds ratio in our sample may be quite different 
than the value if we had data from the entire population).        

You may be tempted to use this final model to say that, the previous finding that 
understanding of false beliefs plays a role in display rule understanding is incorrect. This 
would be a dangerous conclusion to make, and if you have read the section on 
multicollinearity in the book you’ll see why. 

 
Predicted probabilities  
Let’s take a look at the predicted probabilities. We can use the head() function again just to 
look at the first few cases, by executing: 
head(displayData[, c("display", "fb", "age", "predicted.probabilities")]) 
 
This command uses displays the first six cases, and we have selected a subset of variables 
from the eelData dataframe. 
 
  display fb age       predicted.probabilities 
1  No     No  24               0.2068966 
2  No     No  26               0.2068966 
3  No     No  30               0.2068966 
4  No     No  31               0.2068966 
5  No     No  36               0.2068966 
6 Yes     No  29               0.2068966 
 
 
The output above shows the values of the predicted probabilities as well as the initial data 
(you will need to see more of the output to interpret the all of the results; to see the whole 
output, just run the command without putting head at the beginning).  

We found from the model that the only significant predictor of display rule understanding 
was false belief understanding. This could have a value of either 1 (pass the false belief task) 
or 0 (fail the false belief task). These values tells us that when a child doesn’t possess 
second-order false belief understanding (fb = 0, No), there is a probability of .2069 that they 
will pass the display rule task, approximately a 21% chance (1 out of 5 children). However, if 
the child does pass the false belief task (fb = 1, yes), there is a probability of .8049 that they 
will pass the display rule task, an 80.5% chance (4 out of 5 children). Consider that a 
probability of 0 indicates no chance of the child passing the display rule task, and a probability 
of 1 indicates that the child will definitely pass the display rule task. Therefore, the values 
obtained provide strong evidence for the role of false belief understanding as a prerequisite 
for display rule understanding. 

Assuming we are content that the model is accurate and that false belief understanding has 
some substantive significance, then we could conclude that false belief understanding is the 
single best predictor of display rule understanding. Furthermore, age and the interaction of 
age and false belief understanding do not significantly predict display rule understanding.  

This conclusion is fine in itself, but to be sure that the model is a good one, it is important to 
examine the residuals.  

 
Interpreting residuals 
We saw in the previous chapter that the main purpose of examining residuals in any 
regression is to (1) isolate points for which the model fits poorly, and (2) isolate points that 
exert an undue influence on the model. To assess the former we examine the residuals, 
especially the studentized residual, standardized residual and deviance statistics. To assess 
the latter we use influence statistics such as Cook’s distance, DFBeta and leverage statistics.  

If you have saved your residuals in the dataframe then you could look at them by executing 
something like: 
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displayData[, c("leverage", "studentized.residuals", "dfbeta")] 
 
This command will print the leverage, studentized residuals and DFBeta values for the model. 

 
The basic residual statistics for this example (leverage, studentized residuals and DFBeta 

values) are pretty good (see the output below): note that all cases have DFBetas less than 1, 
and leverage statistics are very close to the calculated expected value of 0.018. All in all, this 
means that there are no influential cases having an effect on the model. The studentized 
residuals all have values between –2 and 2 and so there seems to be very little here to 
concern us.  
 
leverage           studentized.residuals dfbeta.(Intercept) dfbeta.fbYes 
1  0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
2  0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
3  0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
4  0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
5  0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
6  0.03448276             1.8132781       1.565055e-01 -1.565055e-01 
7  0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
8  0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
9  0.03448276             1.8132781       1.565055e-01 -1.565055e-01 
10 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
11 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
12 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
13 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
14 0.02439024            -1.8361335      -8.294434e-18 -1.140460e-01 
15 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
16 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
17 0.03448276             1.8132781       1.565055e-01 -1.565055e-01 
18 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
19 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
20 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
21 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
22 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
23 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
24 0.02439024            -1.8361335       8.294434e-18 -1.140460e-01 
25 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
26 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
27 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
28 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
29 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
30 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
31 0.03448276             1.8132781       1.565055e-01 -1.565055e-01 
32 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
33 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
34 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
35 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
36 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
37 0.02439024            -1.8361335       3.317774e-17 -1.140460e-01 
38 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
39 0.03448276             1.8132781       1.565055e-01 -1.565055e-01 
40 0.02439024            -1.8361335       4.976661e-17 -1.140460e-01 
41 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
42 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
43 0.02439024             0.6634679      -5.391382e-17  4.156533e-02 
44 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
45 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
46 0.02439024            -1.8361335       1.244165e-16 -1.140460e-01 
47 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
48 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
49 0.03448276            -0.6876918      -6.003071e-02  6.003071e-02 
50 0.02439024            -1.8361335       1.244165e-16 -1.140460e-01 
51 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
52 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
53 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
54 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
55 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
56 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
57 0.02439024            -1.8361335       1.492998e-16 -1.140460e-01 
58 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
59 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
60 0.03448276             1.8132781       1.565055e-01 -1.565055e-01 
61 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
62 0.02439024             0.6634679      -4.147217e-17  4.156533e-02 
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63 0.02439024             0.6634679      -3.317774e-17  4.156533e-02 
64 0.02439024             0.6634679      -3.317774e-17  4.156533e-02 
65 0.02439024             0.6634679      -3.317774e-17  4.156533e-02 
66 0.02439024             0.6634679      -3.317774e-17  4.156533e-02 
67 0.02439024             0.6634679      -3.317774e-17  4.156533e-02 
68 0.02439024            -1.8361335       1.492998e-16 -1.140460e-01 
69 0.02439024             0.6634679      -3.317774e-17  4.156533e-02 
70 0.02439024             0.6634679      -3.317774e-17  4.156533e-02 
 

You should note that these residuals are slightly unusual because they are based on a 
single predictor that is categorical. This is why there isn’t a lot of variability in the values of the 
residuals. Also, if substantial outliers or influential cases had been isolated, you are not 
justified in eliminating these cases to make the model fit better. Instead these cases should 
be inspected closely to try to isolate a good reason why they were unusual. It might simply be 
an error in inputting data, or it could be that the case was one which had a special reason for 
being unusual: for example, the child had found it hard to pay attention to the false belief task 
and you had noted this at the time of the experiment. In such a case, you may have good 
reason to exclude the case and duly note the reasons why. 

Task 2 

• Recent research has shown that lecturers are among the most stressed workers. A 
researcher wanted to know exactly what it was about being a lecturer that created 
this stress and subsequent burnout. She took 467 lecturers and administered several 
questionnaires to them that measured: Burnout (burnt out or not), Perceived 
Control (high score = low perceived control), Coping Style (high score = low ability 
to cope with stress), Stress from Teaching (high score = teaching creates a lot of 
stress for the person), Stress from Research (high score = research creates a lot of 
stress for the person) and Stress from Providing Pastoral Care (high score = 
providing pastoral care creates a lot of stress for the person). The outcome of interest 
was burnout, and Cooper, Sloan, and Williams’s (1988) model of stress indicates that 
perceived control and coping style are important predictors of this variable. The 
remaining predictors were measured to see the unique contribution of different 
aspects of a lecturer’s work to their burnout. Can you help her out by conducting a 
logistic regression to see which factor predict burnout? The data are in Burnout.dat. 

 
Test 

 
Obviously we need to begin by loading the data: 

burnoutData<-read.delim("Burnout.dat", header = TRUE) 

 
We can see the first six cases of data by executing: 

head(burnoutData) 
   burnout        loc      cope     teaching research pastoral 
1 Not Burnt Out  7.647059  9.160305 32.72727 87.50000 31.48148 
2 Not Burnt Out  6.470588 12.977099 52.72727 66.66667 68.51852 
3 Not Burnt Out  8.823529  9.160305 49.09091 60.41667 53.70370 
4 Not Burnt Out 20.000000  9.160305 52.72727 62.50000 50.00000 
5 Not Burnt Out  6.470588 19.083969 43.63636 79.16667 40.74074 
6 Not Burnt Out  7.058824 16.030534 38.18182 52.08333 48.14815 

 
Looking at the data above, we can see that the categorical variable burnout has two 

categories, Not Burnt Out and Burnt Out, and R has encoded it as a factor. If you think back 
to the eel example in the chapter, you will remember that R encodes factors in alphabetical 
order, which doesn’t always make the most sense for our data analysis. In this particular 
example, this is a problem because Burnt Out will be category 1 and Not Burnt Out category 
2. In other words, Burnt Out will be the baseline category, but it makes more sense for Not 
Burnt Out to be the baseline category. Not to worry, though, we can set Not Burnt Out to be 
the baseline by executing:  
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burnoutData$burnout<-relevel(burnoutData$burnout, "Not Burnt Out") 
 
OK, now we can get stuck into the analysis. The analysis should be done hierarchically 

because Cooper et al.’s model indicates that perceived control and coping style are important 
predictors of burnout. So, these variables should be entered in the first block. The second 
block should contain all other variables because we don’t know anything much about their 
predictive ability. 

We can do this by using the glm() function to create two models as we did in the chapter. To 
create the first model we can execute: 
 
burnoutModel.1 <- glm(burnout ~ loc + cope, data = burnoutData, family = binomial()) 
 

This command creates a model called burnoutModel.1 in which burnout is predicted from loc 
(perceived control) and cope (coping ability). Similarly, we can create the second model by 
executing: 
 
burnoutModel.2 <- update(burnoutModel.1, .~. + teaching + research + pastoral) 
 
This command creates a model called burnoutModel.2 in which burnout is predicted from 
loc, cope, teaching, research and pastoral.  
 
To see the models that we have just generated we need to execute the summary() function 
(remembering to put the model name into the function): 
 
summary(burnoutModel.1) 
summary(burnoutModel.2) 
 
 
Call: 
glm(formula = burnout ~ loc + cope, family = binomial(), data = burnoutData) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.9217  -0.5163  -0.3730   0.1273   2.0848   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -4.484493   0.379458 -11.818  < 2e-16 *** 
loc          0.061080   0.010915   5.596 2.19e-08 *** 
cope         0.082714   0.009369   8.829  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 530.11  on 466  degrees of freedom 
Residual deviance: 364.18  on 464  degrees of freedom 
AIC: 370.18 
 
Number of Fisher Scoring iterations: 5 
 

The output above shows the model summary for the model 1 (burnoutModel.1). We will 
begin by looking at the summary statistics about the model. The overall fit of the model is 
assessed using the deviance statistic. Remember that larger values of the deviance statistic 
indicate poorly fitting statistical models. R provides two deviance statistics: the null deviance, 
and the residual deviance. The null deviance is the deviance of the model that contains no 
predictors, other than the constant. The residual deviance is the deviance for the model. 

At this stage of the analysis the value of the deviance for the model should be less than the 
value for the null model (when only the constant was included in the model), because lower 
values of −2LL indicate that the model is predicting the outcome variable more accurately. For 
the null model −2LL = 530.11, but when cope and loc have been included this value has 
been reduced to 364.18. This reduction tells us that the model is better at predicting burnout 
than it was before cope and loc were added. 

The question of how much better the model predicts the outcome variable can be assessed 
using the model chi-square statistic, which measures the difference between the model as it 
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currently stands and the model when only the constant was included. We can use R to 
automatically calculate the model chi-square and its significance by executing: 

 
modelChi <- burnoutModel.1$null.deviance - burnoutModel.1$deviance 
chidf <- burnoutModel.1$df.null - burnoutModel.1$df.residual 
chisq.prob <- 1 - pchisq(modelChi, chidf) 
 
We can then view the output of these commands by executing: 
 
modelChi; chidf; chisq.prob 

 
[1] 165.9277 
[1] 2 
[1] 0 
 
The change in the amount of information explained by the model (165.93) is significant (p < 
.0001), so using coping ability and perceived control as predictors significantly improves our 
ability to predict whether someone will be burnt out or not, χ2(2) = 165.93, p < .0001. 

Next, we consider the coefficients.  This part is crucial because it tells us the estimates for 
the coefficients for the predictors included in the model. This section of the output gives us 
the coefficients and statistics for the variables that have been included in the model at this 
point (namely  loc, cope and the constant). The crucial statistic is the z-statistic, which has a 
normal distribution and tells us whether the b coefficient for that predictor is significantly 
different from zero. If the coefficient is significantly different from zero then we can assume 
that the predictor is making a significant contribution to the prediction of the outcome. For 
these data it seems to indicate that coping ability, b = 0.08, z = 8.83, p < .001, and perceived 
control, b = 0.06, z = 5.60, p < .001, are both significant predictors of burnout (note that the 
significance of the z-statistics is less than .05 in both cases).   

Next, we want to calculate the various values of R2 , we can do this by executing (remember 
that you need to have executed the function code from the book chapter first): 

  
logisticPseudoR2s(burnoutModel.1) 
 

Pseudo R^2 for logistic regression 
Hosmer and Lemeshow R^2   0.313  
Cox and Snell R^2         0.299  
Nagelkerke R^2            0.441  

 
As you can see, all of the values of R2 differ slightly, but they can be used as effect size 
measures for the model. The model can account for 31% of the variance in prediction 
whether someone is burnt out or not (depending on what measure of R2 you use). 

We can next calculate the odds ratio by executing: 

exp(burnoutModel.1$coefficients) 

 
(Intercept)         loc        cope  
 0.01128261  1.06298389  1.08623164  
 
The value of the odds ratio for loc indicates that as the level of perceived control increases 
(high score = low perceived control), then the odds of being burnt out also increase (because 
the odds ratio is greater than 1). The odds ratio for cope indicates that if the level of coping 
ability increases (high score = low ability to cope with stress), then the odds of being burnt out 
also increase (because the odds ratio is also greater than 1). 

We can also calculate confidence intervals for the odds ratios.  To obtain confidence 
intervals of the parameters, we use the confint() function – just as we did for ordinary 
regression. We can also exponentiate these with the exp() function. To get the confidence 
intervals execute: 

 
exp(confint(burnoutModel.1)) 
 
                 2.5 %     97.5 % 
(Intercept) 0.005160721 0.02292526 
loc         1.041229885 1.08691181 
cope        1.067210914 1.10722003 
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The confidence interval for loc ranges from 1.04 to 1.08, so we can be very confident that the 
value of the odds ratio in the population lies somewhere between these two values. What’s 
more, because both values are greater than 1 we can also be confident that the relationship 
between loc (perceived coping ability) and burnout found in this sample is true of the whole 
population of lecturers. The confidence interval for cope ranges from 1.06 to 1.10, so we can 
be very confident that the value of the odds ratio in the population lies somewhere between 
these two values. In addition, because both values are greater than 1 we can be confident 
that the relationship between cope and burnout found in this sample is true of the whole 
population of lecturers. If we had found that the confidence interval ranged from less than 1 to 
more than 1, then this would limit the generalizability of our findings because the odds ratio in 
the population could indicate either a positive (odds ratio > 1) or negative (odds ratio < 1) 
relationship. 

The output for model 2 (below) shows what happens to the model when our new predictors 
are added. The effect of adding these to the model is to reduce the –2LL to 321.20 (a 
reduction of 42.98 from model 1, suggesting that including the other predictors in the model 
has improved our ability to predict whether a lecturer will be burnt out or not.  

 
Call: 
glm(formula = burnout ~ loc + cope + teaching + research + pastoral,  
    family = binomial(), data = burnoutData) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.41592  -0.48290  -0.28690   0.02966   2.63636   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -4.43993    1.08565  -4.090 4.32e-05 *** 
loc          0.11079    0.01494   7.414 1.23e-13 *** 
cope         0.14234    0.01639   8.684  < 2e-16 *** 
teaching    -0.11216    0.01977  -5.673 1.40e-08 *** 
research     0.01931    0.01036   1.863 0.062421 .   
pastoral     0.04517    0.01310   3.449 0.000563 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 530.11  on 466  degrees of freedom 
Residual deviance: 321.20  on 461  degrees of freedom 
AIC: 333.2 
 
Number of Fisher Scoring iterations: 6 
 
We can again compare model 2 with the baseline model (the model before any predictors 

are added to the model) by finding the difference in the deviance statistics by executing: 
 

modelChi <- burnoutModel.2$null.deviance - burnoutModel.2$deviance 
chidf <- burnoutModel.2$df.null - burnoutModel.2$df.residual 
chisq.prob <- 1 - pchisq(modelChi, chidf) 

modelChi; chidf; chisq.prob 
[1] 208.9086 
[1] 5 
[1] 0 
 
You should find that the difference between the models (modelChi) is 208.9086, with 5 
degrees of freedom (chidf), and a  p-value (chisq.prob) given as 0. As this value is less than 
.05, we can conclude that the overall fit of the model is significant, χ2(5) = 208.91, p < .0001. 

The coefficients part of the output now contains all three predictors, and we can see that all 
the predictors significantly predict burn out except for research. 

Let’s again compute R2 for model 2 (remember to execute the function code first if you 
haven’t done so already): 

logisticPseudoR2s(burnoutModel.2) 
Pseudo R^2 for logistic regression 
Hosmer and Lemeshow R^2   0.394  
Cox and Snell R^2         0.361  



DISCOVERING STATISTICS USING R 

PROFESSOR ANDY P FIELD  24 

Nagelkerke R^2            0.531  
 
Overall, the final model accounts for 36.1–53.1% of the variance in burnout (depending on 
which measure of  R2 you use. 
 
 

We can next calculate the odds ratio by executing: 
 
exp(burnoutModel.2$coefficients) 
 
Executing this command will display the odds ratio for the predictors in the model: 

 
(Intercept)   loc         cope       teaching    research    pastoral  
 0.01179680  1.11715594  1.15296414  0.89389904  1.01949919  1.04620942 
 
We can also calculate confidence intervals for the odds ratios, as we did for model 1:  

 
exp(confint(burnoutModel.2)) 
 
             2.5 %       97.5 % 
(Intercept) 0.001317788 0.09419003 
loc         1.086274965 1.15212014 
cope        1.118430575 1.19286786 
teaching    0.858532732 0.92793154 
research    0.999115252 1.04068582 
pastoral    1.020119629 1.07403586 
 
In terms of the individual predictors we could report: 

•   B 
(SE) 

95% CI for Odds Ratio 

  Lower Odds 
Ratio 

Upper 

Step 1     
•  Constant –4.48** 

(0.38)    
•  Perceived 

Control 
0.06** 
(0.01) 

1.04 1.06 1.09 

•  Coping Style 0.08** 
(0.01) 

1.07 1.09 1.11 

Final     
•  Constant –4.44** 

(1.09)    
•  Perceived 

Control 
0.11** 
(0.01) 

1.08 1.12 1.15 

•  Coping Style 0.14** 
(0.02) 

1.12 1.15 1.19 

•  Teaching Stress 
 
     Research 

–0.11** 
(0.02) 

      0.02 
     (0.01) 

0.86 
 
     1.00 

0.89 
 
     1.02 

0.93 
 
      1.04 

•  Pastoral Stress 0.05* 
(0.01) 

1.02 1.05 1.07 

Note: R2  = .36 (Cox and Snell), .53 (Nagelkerke). Model χ2(5) = 208.91, p < .001. * p < .01, ** p < .001. 
It seems as though burnout is significantly predicted by perceived control, coping style (as 

predicted by Cooper), stress from teaching and stress from giving pastoral care. The odds 
ratio and direction of the beta values tell us that, for perceived control, coping ability and 
pastoral care, the relationships are positive. That is (and look back to the question to see the 
direction of these scales, i.e. what a high score represents), poor perceived control, poor 
ability to cope with stress, and stress from giving pastoral care all predict burnout. However, 
for teaching, the relationship is the opposite way around: stress from teaching appears to be 
a positive thing as it predicts not becoming burnt out!    
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Task 3 

• A health psychologist interested in research into HIV wanted to know the factors that 
influenced condom use with a new partner (relationship less than 1 month old). The 
outcome measure was whether a condom was used (use: condom used = 1, not 
used = 0). The predictor variables were mainly scales from the Condom Attitude 
Scale (CAS) by Sacco, Levine, Reed, and Thompson (1991): gender (gender of the 
person); safety (relationship safety, measured out of 5, indicates the degree to which 
the person views this relationship as ‘safe’ from sexually transmitted disease); 
sexexp (sexual experience, measured out of 10, indicates the degree to which 
previous experience influences attitudes towards condom use); previous (a measure 
not from the CAS, this variable measures whether or not the couple used a condom 
in their previous encounter: 1 = condom used, 0 = not used, 2 = no previous 
encounter with this partner); selfcon (self-control, measured out of 9, indicates the 
degree of self-control that a person has when it comes to condom use, i.e. whether 
they get carried away with the heat of the moment, or exert control); perceive 
(perceived risk, measured out of 6, indicates the degree to which the person feels at 
risk from unprotected sex). Previous research (Sacco, Rickman, Thompson, Levine, 
& Reed, 1993) has shown that gender, relationship safety and perceived risk predict 
condom use. Carry out an appropriate analysis to verify these previous findings, and 
to test whether self-control, previous usage and sexual experience can predict any of 
the remaining variance in condom use. (1) Interpret all important parts of the R 
output. (2) How reliable is the final model? (3) What are the probabilities that 
participants 12, 53 and 75 will use a condom? (4) A female who used a condom in 
her previous encounter with her new partner scores 2 on all variables except 
perceived risk (for which she scores 6). Use the model to estimate the probability that 
she will use a condom in her next encounter. Data are in the file condom.dat. 

 
Remember to load the data first: 
condomData<-read.delim("condom.dat", header = TRUE) 
 
Let’s have a look at first six cases of data by executing: 
head(condomData) 

 
particip safety       use     gender  sexexp  previous selfcon perceive 
1        5      3 Unprotected Female      5 No Condom       5        4 
2        6      1 Unprotected   Male      3 No Condom       2        2 
3        9      0 Unprotected Female      2 No Condom       3        0 
4       13      3 Unprotected   Male      3 No Condom       4        4 
5       14      2 Unprotected Female      3 No Condom       6        3 
6       18      0 Unprotected Female      8 No Condom       5        1 

 
We need to relevel the categorical variables in the dataframe: 
condomData$use<-relevel(condomData$use, "Unprotected") 
condomData$gender<-relevel(condomData$gender, "Male") 

For the categorical variable previous it makes sense to specify the baseline category as “no 
condom”. We can do this by executing: 
condomData$previous<-relevel(condomData$previous, "No Condom") 
 

The correct analysis was to run a hierarchical logistic regression entering perceive, safety 
and gender in the first block and previous, selfcon and sexexp in a second. We can create 
these two models by executing: 

 
condomModel.1 <- glm(use ~ perceive + safety + gender, data = condomData, family = 
binomial()) 
condomModel.2 <- update(condomModel.1, .~. + previous + selfcon + sexexp) 
 
We can then see the output of the two models by executing: 
summary(condomModel.1) 
summary(condomModel.2) 
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Let’s first look at condomModel.1. The output of this model is shown below: 
 

Call: 
glm(formula = use ~ perceive + safety + gender, family = binomial(),  
    data = condomData) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.0523  -1.0255   0.3228   0.8832   2.3567   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   2.1594     0.6349   3.401 0.000671 *** 
perceive     -0.9402     0.2230  -4.217 2.48e-05 *** 
safety        0.4641     0.2178   2.131 0.033099 *   
genderMale    0.3167     0.4963   0.638 0.523361     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 136.66  on 99  degrees of freedom 
Residual deviance: 105.77  on 96  degrees of freedom 
AIC: 113.77 
 
The first thing to note is that −2LL has dropped from 136.66 (null deviance) to 105.77 
(residual deviance), which is a change of 30.89 (which is the value given by the model chi-
square). This value tells us about the model as a whole. We can test the significance of this 
change in –2LL by executing: 

 
modelChi <- condomModel.1$null.deviance - condomModel.1$deviance 
chidf <- condomModel.1$df.null - condomModel.1$df.residual 
chisq.prob <- 1 - pchisq(modelChi, chidf) 
modelChi; chidf; chisq.prob 

 
[1] 30.89248 
[1] 3 
[1] 8.955305e-07 
 
The output above tells us that the change in the amount of information explained by the 
model is significant (χ2(3) = 30.89, p < .0001), so using perceived risk, relationship safety and 
gender as predictors significantly improves our ability to predict condom use. 

Next, we consider the coefficients.  This part is crucial because it tells us the estimates for 
the coefficients for the predictors included in the model. This section of the output gives us 
the coefficients and statistics for the variables that have been included in the model at this 
point (namely  perceive, safety, gender and the constant). The crucial statistic is the z-
statistic which has a normal distribution and tells us whether the b coefficient for that predictor 
is significantly different from zero. If the coefficient is significantly different from zero then we 
can assume that the predictor is making a significant contribution to the prediction of the 
outcome. For these data it seems to indicate that the values for perceived risk, b = −0.94, z = 
–4.22, p < .001, and relationship safty, b = 0.46, z = 2.13, p < .05, are both significant 
predictors of condom use (note that the significance of the z-statistics is less than .05 in both 
cases). However, gender was not a significant predictor of whether someone was likely to use 
a condom, b = 0.32, z = 0.64, p > .05. 

Next, we want to calculate the various values of R2 , and we can do this by executing 
(remember that you need to have executed the function code from the book chapter first): 

  
logisticPseudoR2s(condomModel.1) 
 

Pseudo R^2 for logistic regression 
Hosmer and Lemeshow R^2   0.226  
Cox and Snell R^2         0.266  
Nagelkerke R^2            0.357 

 
As you can see, all of the values of R2 differ slightly, but they can be used as effect size 
measures for the model. The model can account for 22.6–35.7% of the variance in predicting 
whether someone will use a condom or not (depending on what measure of R2 you use). 
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We can next calculate the odds ratio by executing: 
 

exp(condomModel.1$coefficients) 
 
(Intercept)     perceive     safety     genderFemale  
 0.08407051     2.56047130   0.62867995   1.37260745  
 

We can also calculate confidence intervals for the odds ratios.  To obtain confidence intervals 
of the parameters, we use the confint() function – just as we did for ordinary regression. We 
can also exponentiate these with the exp() function. To get the confidence intervals execute: 

 
exp(confint(condomModel.1)) 
 
               2.5 %    97.5 % 
(Intercept)  0.01682132 0.3309217 
perceive     1.73455558 4.2126668 
safety       0.38809459 0.9277043 
genderFemale 0.52183556 3.6998237 
 
The values for perceived risk (odds ratio 2.56, confidence interval from 1.73 to 4.21) indicate 
that if the value of perceived risk goes up by 1, then the odds of using a condom also 
increase (because the odds ratio is greater than 1). The confidence interval for this value 
ranges from 1.73 to 4.21 so we can be very confident that the value of the odds ratio in the 
population lies somewhere between these two values. What’s more, because both values are 
greater than 1 we can also be confident that the relationship between perceived risk and 
condom use found in this sample is true of the whole population. In short, as perceived risk 
increase by 1, people are just over twice as likely to use a condom. 

The values for relationship safety (odds ratio 0.63, confidence interval from 0.39 to 0.93) 
indicate that if the relationship safety increases by one point, then the odds of using a 
condom decrease (because the odds ratio  is less than 1). The confidence interval for this 
value ranges from 0.39 to 0.93 so we can be very confident that the value of the odds ratio in 
the population lies somewhere between these two values. In addition, because both values 
are less than 1 we can be confident that the relationship between relationship safety and 
condom use found in this sample is true of the whole population. In short, as relationship 
safety increases by one unit, subjects are about 1.6 times less likely to use a condom. 

The values for gender (odds ratio 1.37, confidence interval from 0.52 to 3.70) indicate that 
as gender changes from 0 (male) to 1 (female), then the odds of using a condom increase 
(because the odds ratio  is greater than 1). However, the confidence interval for this value 
crosses 1, which limits the generalizability of our findings because the odds ratio in other 
samples (and hence the population) could indicate either a positive (odds ratio > 1) or 
negative (odds ratio < 1) relationship. Therefore, gender is not a reliable predictor of condom 
use. 

The output below shows what happens to the model when our new predictors are added 
(previous use, self-control and sexual experience). This part of the output describes block 2, 
which is just the model described in block 1 but with a new predictors added. So, we begin 
with the model that we had in block 1 and we then add previous, selfcon and sexexp to it. 
The effect of adding these predictors to the model is to reduce the –2LL to 87.971 (a 
reduction of 48.69 from the original model and an additional reduction of 17.799 from the 
reduction caused by model 1).  
 
Call: 
glm(formula = use ~ perceive + safety + gender + previous + selfcon +  
    sexexp, family = binomial(), data = condomData) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.2237  -0.6905  -0.2072   0.6244   1.9748   
 
Coefficients: 
                                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)                     -4.959739   1.146497  -4.326 1.52e-05 *** 
perceive                         0.949088   0.236972   4.005 6.20e-05 *** 
safety                          -0.482460   0.236033  -2.044  0.04095 *   
genderFemale                     0.002656   0.572823   0.005  0.99630     
previousCondom used              1.087196   0.551952   1.970  0.04887 *   
previousFirst Time with partner -0.016615   1.399907  -0.012  0.99053     
selfcon                          0.347626   0.126842   2.741  0.00613 **  
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sexexp                           0.180423   0.111586   1.617  0.10590     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 136.663  on 99  degrees of freedom 
Residual deviance:  87.971  on 92  degrees of freedom 
AIC: 103.97 

 
We can test whether the improvement from model 1 to model 2 is significant by executing: 
 

modelChi <- condomModel.1$deviance - condomModel.2$deviance 
chidf <- condomModel.1$df.residual - condomModel.2$df.residual 
chisq.prob <- 1 - pchisq(modelChi, chidf) 
modelChi; chidf; chisq.prob 
 

[1] 17.79902 
[1] 4 
[1] 0.001350844 
 
The output above tells us that the additional improvement of block 2 is significant (χ2(4) = 
17.80, p < .01), which tells us that including these three new predictors in the model has 
significantly improved our ability to predict condom use.  
Coefficients: 
                                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)                     -4.959739   1.146497  -4.326 1.52e-05 *** 
perceive                         0.949088   0.236972   4.005 6.20e-05 *** 
safety                          -0.482460   0.236033  -2.044  0.04095 *   
genderFemale                     0.002656   0.572823   0.005  0.99630     
previousCondom used              1.087196   0.551952   1.970  0.04887 *   
previousFirst Time with partner -0.016615   1.399907  -0.012  0.99053     
selfcon                          0.347626   0.126842   2.741  0.00613 **  
sexexp                           0.180423   0.111586   1.617  0.10590     

 
The coefficients section of the output now contains all predictors. This part of the output 

represents the details of the final model. The significance values of the b coefficient for each 
predictor indicate that both perceived risk (b = 0.94, z = 4.00, p < .001) and relationship safety 
(b = −0.48, z = −2.04, p < .001) still significantly predict condom use and, as in block 1, 
gender does not (b = 0.00, z = 0.01, p > .05). We can now look at the new predictors to see 
which of these has some predictive power.  

Previous use has been split into two components (according to whatever contrasts were 
specified for this variable). From the output we can see that previousCondom used 
compares the condom used group against the other two, and previousFirst Time with 
partner compares the base category of first time with partner against the other two 
categories. Therefore, we can tell that previous use is not a significant predictor of condom 
use when it is the first time with a partner compared to when it is not the first time (b = −0.02, 
z = −0.01, p > .05). However, when we compare the condom used category to the other 
categories we find that using a condom on the previous occasion does predict use on the 
current occasion (b = 1.09, z = 1.97, p < .05). 

Of the other new predictors, we find that self-control predicts condom use (b = 0.35, z = 
2.74, p < .01) but sexual experience does not (b = 0.18, z = 1.62, p > .05). 

Let’s again compute R2 for model 2 (remember to execute the function code first if you 
haven’t done so already in this session): 

 
logisticPseudoR2s(condomModel.2) 
 
Pseudo R^2 for logistic regression 
Hosmer and Lemeshow R^2   0.356  
Cox and Snell R^2         0.385  
Nagelkerke R^2            0.517 
 
Overall, the final model accounts for 35.6–51.7% of the variance in predicting condom use 
(depending on which measure R2 you use). 

We can next calculate the odds ratio by executing: 
 
exp(condomModel.2$coefficients) 
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Executing this command will display the odds ratio for the predictors in the model: 

 
(Intercept)         perceive                          safety  
0.007014758         2.583353254                     0.617263292  
gender:Female        previous:Condom used   previous:First Time with partner  
1.002659308         2.965946499                     0.983522066  
selfcon             sexexp  
1.415702224         1.197724363  
 
We can also calculate confidence intervals for the odds ratios, as we did for model 1:  

 
exp(confint(condomModel.2)) 

 
 

 
                                 2.5 %          97.5 % 
(Intercept)                     0.0005824489  0.05487106 
perceive                        1.6995027286  4.36242303 
safety                          0.3671545834  0.94143728 
genderFemale                    0.3208849083  3.10396280 
previousCondom used             1.0303140867  9.17513490 
previousFirst Time with partner 0.0361032447 13.94704684 
selfcon                         1.1188404702  1.85122675 
sexexp                          0.9702216719  1.50978237 
 

Looking at the output for the odds ratio and confidence intervals above, we can see that the 
values for perceived risk (odds ratio 2.58, confidence interval from 1.70 to 4.36) indicate that 
if the value of perceived risk goes up by 1, then the odds of using a condom also increase. 
What’s more, because the confidence interval doesn’t cross 1 we can also be confident that 
the relationship between perceived risk and condom use found in this sample is true of the 
whole population. As perceived risk increases by 1, people are just over twice as likely to use 
a condom. 

The values for relationship safety (odds ratio 0.62, confidence interval from 0.37 to 0.94) 
indicate that if the relationship safety decreases by one point, then the odds of using a 
condom decrease. The confidence interval does not cross 1 so we can be confident that the 
relationship between relationship safety and condom use found in this sample is true of the 
whole population. As relationship safety increases by one unit, subjects are about 1.6 times 
less likely to use a condom. 

The values for gender (odds ratio 1.00, confidence interval from 0.32 to 3.10) indicate that 
as gender changes from 0 (male) to 1 (female), then the odds of using a condom do not 
change (because the odds ratio is equal to 1). The confidence interval crosses 1, therefore 
gender is not a reliable predictor of condom use. 

The values for previous condom use (odds ratio 2.97, confidence interval from 1.03 to 9.18) 
indicate that if the value of previous usage goes up by 1 (i.e. changes from not having used 
one or being the first time to having used one), then the odds of using a condom also 
increase. What’s more, because the confidence interval doesn’t cross 1 we can also be 
confident that this relationship is true in the whole population. If someone used a condom on 
their previous encounter with this partner (compared to if they didn’t use one, or if it is their 
first time) then they are three times more likely to use a condom. For previous first time with 
partner the odds ratio (0.98, confidence interval from 0.04 to 13.95) indicates that if the value 
of previous usage goes up by 1 (i.e. changes from not having used one or having used one to 
being their first time with this partner), then the odds of using a condom do not change 
(because the value is very nearly equal to 1). What’s more, because the confidence interval 
crosses 1 we can tell that this is not a reliable predictor of condom use. 

The values for self-control (odds ratio 1.42, confidence interval from 1.12, 1.85) indicate that 
if self-control increases by one point, then the odds of using a condom increase also. The 
confidence interval does not cross 1 so we can be confident that the relationship between 
relationship safety and condom use found in this sample is true of the whole population. As 
self-control increases by one unit, subjects are about 1.4 times more likely to use a condom. 

The values for sexual experience (odds ratio 1.20, confidence interval from 0.97, 1.51) 
indicate that as sexual experience increases by one unit, then the odds of using a condom 
increase slightly. However, the confidence interval crosses 1, therefore sexual experience is 
not a reliable predictor of condom use. 
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How reliable is the final model?  
Multicollinearity can affect the parameters of a regression model. Logistic regression is 
equally prone to the biasing effect of collinearity, and it is essential to test for collinearity 
following a logistic regression analysis. We can get the VIF and tolerance as we did in 
Chapter 7 by entering the model name into the vif() function from the car package. Execute: 

 
 vif(condomModel.2) 
1/vif(condomModel.2) 
 
The first block gives the VIF values and the second the tolerance (which is simply the 
reciprocal of the VIF). 

 
 

              
          GVIF    Df     GVIF^(1/(2*Df)) 
perceive 1.794738  1        1.339678 
safety   1.783765  1        1.335577 
gender   1.169653  1        1.081505 
previous 1.083281  2        1.020200 
selfcon  1.060989  1        1.030043 
sexexp   1.120416  1        1.058497 
 
 
          GVIF      Df    GVIF^(1/(2*Df)) 
perceive 0.5571845 1.0       0.7464479 
safety   0.5606119 1.0       0.7487402 
gender   0.8549542 1.0       0.9246373 
previous 0.9231214 0.5       0.9802000 
selfcon  0.9425165 1.0       0.9708329 
sexexp   0.8925260 1.0       0.9447359 

 
 
Looking at the tolerance values, we can see that for all variables the tolerance values are 
close to 1 and are much larger than the cut-off point of 0.1 below which Menard (1995) 
suggests there may be a serious collinearity problem. Myers (1990) also suggests that a VIF 
value greater than 10 is cause for concern and in these data the values are all less than this 
criterion.  

We can also test for linearity of the logit. In this example we have four continuous variables, 
therefore we have to check that each one is linearly related to the log of the outcome variable 
(use). I mentioned in the book chapter that to test this assumption we need to run the logistic 
regression but include predictors that are the interaction between each predictor and the log 
of itself (Hosmer & Lemeshow, 1989). We need to create the log of each of the variables, by 
using the log() function: 
 
condomData$logsafety<-log(condomData$safety +1) 
condomData$logsexexp<-log(condomData$sexexp +1) 
condomData$logselfcon<-log(condomData$selfcon + 1) 
condomData$logperceive<-log(condomData$perceive +1) 
 

To test the assumption we need to redo the analysis exactly the same as before except that 
we should put all variables in a single block (i.e., we don’t need to do it hierarchically), and we 
also need to put in three new interaction terms of each predictor and their logs. We create the 
model by executing: 
 
condomTest.1 <- glm(use ~ safety + sexexp + selfcon + perceive + safety:logsafety + 
sexexp:logsexexp + selfcon:logselfcon + perceive:logperceive, data = condomData, 
family=binomial()) 

 
We then use the summary() function to display the model: 

 
summary(condomTest.1) 

 
 Coefficients: 
                     Estimate Std. Error z value Pr(>|z|)   
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(Intercept)          -33.9873    17.3118  -1.963   0.0496 * 
safety               -20.9723    15.4100  -1.361   0.1735   
sexexp                -1.3946     1.0968  -1.272   0.2035   
selfcon               -0.3946     1.1061  -0.357   0.7213   
perceive              42.2504    25.0871   1.684   0.0922 . 
safety:logsafety      10.0270     7.3288   1.368   0.1713   
sexexp:logsexexp       0.6537     0.4449   1.469   0.1417   
selfcon:logselfcon     0.2976     0.4708   0.632   0.5273   
perceive:logperceive -17.5402    10.4679  -1.676   0.0938 . 

 
The above table shows the part of the output that tests the assumption. We’re interested 

only in whether the interaction terms are significant. Any interaction that is significant 
indicates that the main effect has violated the assumption of linearity of the logit. All four 
interactions have significance values (the values in the column Pr(>|z|)) greater than .05, 
indicating that the assumption of linearity of the logit has been met for safety, sexexp, 
selfcon and perceive. 

Residuals should be checked for influential cases and outliers. As with linear regression, it is 
possible to calculate residuals. These residual variables can then be examined to see how 
well the model fits the observed data. The commands to obtain residuals are the same as 
those we encountered for linear regression.  To obtain residuals, we can use the resid() 
function and include the model name within it. 

Fitted values for logistic regression are a little different from linear regression.  The fitted 
values are the predicted probabilities of Y occurring given the values of each predictor for a 
given participant. We can also calculate a predicted group membership, based on the most 
likely outcome for each person based on the model. The group memberships are based on 
the predicted probabilities, and I will explain these values in more detail when we consider 
how to interpret the residuals. Predicted probabilities are obtained with the fitted() function 
(again, we simply supply the model name to the function). 

As with ordinary regression, then, we can add these casewise diagnostic variables to our 
dataframe by creating new variables to contain them and then using the various functions we 
encountered in section 7.9.2 to populate these variables with the appropriate values. For 
example, as a basic set of diagnostic statistics we might execute: 

 
condomData$predicted.probabilities<-fitted(condomModel.2) 
condomData$standardized.residuals<-rstandard(condomModel.2) 
condomData$studentized.residuals<-rstudent(condomModel.2) 
condomData$dfbeta<-dfbeta(condomModel.2) 
condomData$dffit<-dffits(condomModel.2) 

 
You might want to save the file after creating these variables by executing: 

write.table(condomData, "condom With Diagnostics.dat", sep = "\t", row.names = FALSE) 

 
Interpreting residuals 
If you have saved your residuals in the dataframe then you could look at them by executing 
something like: 
condomData[, c("leverage", "studentized.residuals", "dfbeta")] 

 
This command will print the leverage, studentized residuals and DFBeta values for model. I 
haven’t pasted the output here as there is quite a lot of it and it would take up a lot of space! 

The basic residual statistics for this example (leverage, studentized residuals and DFBeta 
values) are pretty good: note that all cases have DFBetas less than 1, and leverage statistics 
are very close to the calculated expected value of 0.018. All in all, this means that there are 
no influential cases having an effect on the model. The studentized residuals all have values 
between –2 and +2 and so there seems to be very little here to concern us.  

 
What are the probabilities that participants 12, 53 and 75 will use a condom? 

 
We want the predicted probabilities of condom use for participants, 12, 53 and 75 only. We 
can get these by executing the same command as we used for calculating the predicted 
probabilities before, but adding c(12,53,75) before the comma in the command. Therefore, 
we would execute: 
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(condomData[c(12,53,75), c("use", "safety", "sexexp","selfcon", "perceive", 
"previous", "gender", "predicted.probabilities")]) 
 

     use        safety sexexp selfcon perceive    previous gender    predicted.probabilities 
12 Unprotected      3      1       1        6   No Condom Female               0.4546541 
53 Unprotected      5      3       7        6 Condom used   Male               0.9156252 
75 Condom Used      2      2       4        3 Condom used Female               0.4412250 

 
The output above tells us that the probablility that participant 12 will use a condom is 45%, 

the probability that participant 53 will use a condom is 92% and the probability that participant 
75 will use a condom is 44%.  

 

A female, who used a condom in her previous encounter with her new partner, scores 
2 on all variables except perceived risk (for which she scores 6). Use the model to 
estimate the probability that she will use a condom in her next encounter. 
Step 1: Logistic regression equation: 
 

 

where Z = b0 + b1X1 + b2X2 + … + bnXn, 

 

 
Step 2: Use the values of b from the R output of model 2 to construct the following table: 
 

Variable bi Xi bi Xi 
gender 0.0027 1 0.0027 
safety −0.482

5 
2 −0.965 

sexexp 0.1804 2 0.3608 
previousCondom used 1.0872 1 1.0872 
previousFirst Time 
with partner 

−0.016
7 

0 0 

selfcon 0.3476 2 0.6952 
perceive 0.9491 6 5.6946 

 
Step 3: Place the values of bi Xi into the equation for z (remembering to include the constant): 
 

𝑧= −4.9597+0.0027−0.965+0.3608+1.0872+0+0.6952+5.6934 

                         = 1.9146 

 
Step 4: Replace this value of z into the logistic regression equation (NB: you can calculate ‘e 
to the power of –1.9146’ in R by typing exp(-1.9146)): 

 

𝑃𝑌= 11+𝑒−𝑍 

 

                  = 11+𝑒−1.9146 

 

                      = 11+0.1474008 

 

             =0.8715349 
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Therefore, there is a 87% chance that she will use a condom on her next encounter. 
 


